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Abstract: 

 Cone normed spaces are the generalization of the normed spaces with many authors adjusting 

the theory to the classical one. In this chapter, we explore and study some properties of the space of 

all continuous linear mappings between cone normed spaces and this allows us to define the concept 

of dual in the setting of cone normed spaces. 
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1. Introduction and Preliminaries: 

 Functional Analysis is a branch of mathematical analysis that studies functionals (a mapping 

acting between a vector space and a field 𝔽= (ℝ/ℂ)) such as metric, norm, inner product and the spaces 

on which they act such as metric spaces, normed spaces, and inner product spaces in order to study 

their topological properties. It is well known that metric and norm structures play a pivotal role in 

functional analysis. In the early nineteenth century, Frechet became the first person to introduce the 

distance function called metric on a non-empty set 𝑋. Later Banach, Hahn and Weiner independently 

define a norm on a vector space 𝑋. Rzepecki introduced a notion of cone metric and a cone norm where 

the author replaced the real numbers as the         co-domain of both the metric and norm by the real 

Banach space ordered by a cone. The concept serves as the generalization of both the metric and norm 

since the real numbers arealso complete with respect to the norm defined on them.many authors have 

used this concept in exploring more of its properties and applicability by attempting to adjust the theory 

of cone norm to the classical one. The aim of this paper is to study about the dual space of a cone 

normed space. 

Definition 1-Pointed Cone 

 A nonempty subset 𝑃 of a Banach space 𝐹 is said to be a cone if 

1. 𝑃 + 𝑃 ⊆ 𝑃  Closure under vector addition 

2. 𝜇𝑃 ⊆ 𝑃 ∀ 𝜇 ≥ 0 Closure under scalar multiplication 

In addition, 𝑃 ∩ {−𝑃} = {0}, then 𝑃 is called a Pointed Cone. 

Remark: 

 For a cone, 𝑃 ⊆ 𝐹, where 𝐹 is a Banach space, we define a partial ordering ≤ with respect to 

𝑃 by 𝑎 ≤ 𝑏 if and only if 𝑏 − 𝑎 ∈ 𝑃 while 𝑎 ≪ 𝑏 if and only if 𝑏 − 𝑎 ∈ 𝑖𝑛𝑡 𝑃, where 𝑖𝑛𝑡 𝑃 denote the 

interior of 𝑃. 

Observe that 𝑏 − 𝑎 ∈ 𝑖𝑛𝑡 𝑃 implies 𝑏 − 𝑎 ∈ 𝑃 but the reverse is not always the case. Thus, 

𝑎 ≪ 𝑏 ⟹ 𝑎 ≤ 𝑏. 

Definition 2. 

 Let the real vector space be 𝑋. Suppose that the mapping ‖∙‖𝑐: 𝑋 ⟶ 𝐹 where 𝐹 is a real Banach 

space, satisfies: 

a) ‖𝑎‖𝑐 ≥ 0 ∀𝑎 ∈ 𝑋        (1) 

b) ‖𝑎‖𝑐 = 0 ⟺ 𝑎 = 0 ∀𝑎 ∈ 𝑋       (2) 
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c) ‖𝛼𝑎‖𝑐 = |𝛼|‖𝑎‖𝑐 ∀𝑎 ∈ 𝑋 and 𝛼 ∈ ℝ     (3) 

d) ‖𝑎 + 𝑏‖𝑐 ≤ ‖𝑎‖𝑐 + ‖𝑏‖𝑐 ∀𝑎, 𝑏 ∈ 𝑋.      (4) 

where ‖∙‖𝑐 is said to be cone norm on 𝑋 and (𝑋, ‖∙‖𝑐) is a cone normed space. 

Definition 3. 

 Let (𝑋, ‖∙‖𝑐) be a cone normed space. A sequence (𝑥𝑛) ∈ 𝑋 is said to be  

1. Cauchy, if for every 0 ≪ 𝑐 with 𝑐 ∈ 𝐹 there exists 𝑁 ∈ ℕ such that  

a. ‖𝑥𝑛 − 𝑥𝑛0
‖

𝑐
≪ 𝑐 ∀ 𝑛, 𝑛0 ≥ ℕ 

2. Convergent to 𝑎, if for every 0 ≪ 𝑐 with 𝑐 ∈ 𝐹 there exists 𝑁 ∈ ℕ such that  

                                          ‖𝑥𝑛 − 𝑎‖𝑐 ≪ 𝑐 ∀𝑛 ≥ ℕ 
(𝑋, ‖∙‖𝑐) is said to be complete cone normed space or cone Banach space if every Cauchy sequence 

converge. 

2. SPACES OF CONTINOUS LINEAR MAPPINGS ON CONE NORMED SPACE 

Consider the two cone normed spaces be 𝑋𝑐 = (𝑋, ‖∙‖𝑐),𝑌𝑐 = (𝑌, ‖∙‖𝑐) and (𝑋, ‖∙‖) be the 

classical normed space. Then ℒ(𝑋𝑐, 𝑌𝑐) be the linear space of all continuous linear mappings from 𝑋𝑐 

to 𝑌𝑐, i.e.𝑓: 𝑋𝑐 ⟶ 𝑌𝑐 such that 𝑓 ∈ ℒ(𝑋𝑐, 𝑌𝑐). 

Definition 4-Cone bounded map 

 Let 𝑋𝑐 and 𝑌𝑐 be two cone normed spaces and 𝑓: 𝑋𝑐 ⟶ 𝑌𝑐 be a linear mapping. Then, 𝑓 is said 

to be cone bounded if there exists 0 ≪ 𝑀 such that ‖𝑓(𝑎)‖𝑐 ≤ 𝑀‖𝑎‖𝑐 for all 𝑎 ∈ 𝑋𝑐.  

Proposition 1. 

Let (𝑋, ‖∙‖𝑝) be a cone normed space, and 𝑎 ∈ 𝑋, 0 ≪ 𝑐. Then 

  𝑏 ∈ 𝐵𝑐(𝑎)̅̅ ̅̅ ̅̅ ̅ ⟺ (∃ {𝑧𝑛} ⊆ 𝐵𝑐(𝑎); 𝑧𝑛 ⟶ 𝑏) 

Proof: 

 Let 𝑏 ∈ 𝐵𝑐(𝑎)̅̅ ̅̅ ̅̅ ̅. 

Then for any positive integer 𝑛,  

𝑧𝑛 ∈ 𝐵 𝑐
2𝑛

(𝑏) ∩ 𝐵𝑐(𝑎) ≠ 𝜙  

 We obtain, 𝑧𝑛 ⟶ 𝑏 as 𝑛 ⟶ ∞. 

Suppose that {𝑧𝑛} ∈ 𝐵𝑐(𝑎) is a sequence that 𝑧𝑛 ⟶ 𝑏 as 𝑛 ⟶ ∞. 

Let 𝑊 be an open set and that 𝑊 consists of 𝑏. 

There is 0 ≪ 𝑝 such that 𝐵𝑝(𝑏) ⊆ 𝑊. 

Choose the positive integer 𝑛, such that  

  ‖𝑧𝑛 − 𝑏‖𝑝 ≪ 𝑝 

Hence,  𝑧𝑛 ∈ 𝐵𝑝(𝑏) and 

  𝑊 ∩ 𝐵𝑐(𝑎) ≠ 𝜙 

So that, 𝑏 ∈ 𝐵𝑐(𝑎)̅̅ ̅̅ ̅̅ ̅ 

Hence, the proposition. 

Lemma 1. 

 Let the two cone normed spaces be 𝑋𝑐, 𝑌𝑐 and 𝑓: 𝑋𝑐 ⟶ 𝑌𝑐 is a linear mapping.      (Continuity 

at a point) For some fixed 𝑎0 ∈ 𝑋and given 0 ≪ 𝑐 there is a 0 ≪ 𝑡 such that ‖𝑓(𝑎) − 𝑓(𝑎0)‖𝑐 ≪ 𝑐 

whenever ‖𝑎 − 𝑎0‖𝑐 ≪ 𝑡. Then (Continuity at zero) For 0 ≪ 𝑐 there is a 0 ≪ 𝑡 such that ‖𝑓(𝑎)‖𝑐 ≪
𝑐 whenever 𝑎 ∈ 𝑋 and ‖𝑎‖𝑐 ≪ 𝑡. 

Proof: 

 First, we assume that 𝑓 has the property of continuity at a point.  

For some 𝑎0 ∈ 𝑋 and any 0 ≪ 𝑐 we can choose 0 ≪ 𝑡 such that ‖𝑓(𝑎) − 𝑓(𝑎0)‖𝑐 ≪ 𝑐 

whenever ‖𝑎 − 𝑎0‖𝑐 ≪ 𝑡. 

 Then for any 𝑢 ∈ 𝑋 with ‖𝑢‖𝑐 ≪ 𝑡  we have  ‖𝑓(𝑢 + 𝑎0) − 𝑓(𝑎0)‖𝑐 ≪ 𝑐 because 
‖(𝑢 + 𝑎0) − 𝑎0‖𝑐 ≪ 𝑡.  

But 𝑓 is linear and hence ‖𝑓𝑢‖𝑐 ≪ 𝑐 whenever ‖𝑢‖𝑐 ≪ 𝑡. 

   Hence, the Lemma 
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Lemma 2. 

 Let the two cone normed spaces be 𝑋𝑐 and 𝑌𝑐  and 𝑓: 𝑋𝑐 ⟶ 𝑌𝑐 is a linear mapping. Then 𝑓 ∈
ℒ(𝑋𝑐, 𝑌𝑐), if and only if 𝑓 is cone bounded. 

Proof: 

Assume that 𝑓 is cone bounded, then there exists 0 ≪ 𝑀 such that ‖𝑓(𝑎)‖𝑐 ≤ 𝑀‖𝑎‖𝑐 for all 

𝑎 ∈ 𝑋𝑐. 

 Let 0 ≪ 𝑐 be given and consider an arbitrary 𝑎0 ∈ 𝑋, then we can choose  𝑡 =
𝑐

𝑀
≫ 0 such that 

‖𝑎 − 𝑎0‖𝑐 ≪ 𝑡 for all 𝑎 ∈ 𝑋. Now, for any 𝑎 ∈ 𝑋 

 ‖𝑓(𝑎) − 𝑓(𝑎0)‖𝑐 = ‖𝑓(𝑎 − 𝑎0)‖𝑐, since 𝑓 is linear 

            ≤ 𝑀‖(𝑎 − 𝑎0)‖𝑐, since 𝑓 is cone bounded 

       ≪ 𝑀 × 𝑡 = 𝑐 

But 𝑎0 was arbitrary, hence 𝑓 is continuous. 

Conversely, 

 Suppose that 𝑓 ∈ ℒ(𝑋𝑐, 𝑌𝑐) and we know that the continuity at a point implies continuity at 

zero. Thus, given 0 ≪ 𝑐 there is a 0 ≪ 𝑡 such that ‖𝑓(𝑎)‖𝑐 ≤ 𝑐 whenever 𝑎 ∈ 𝑋 and    ‖𝑎‖𝑐 ≪ 𝑡. 

 Take any point 𝑧 ∈ 𝑋 with 𝑧 ≠ 0 and set 𝑎 =
𝑡

‖𝑧‖𝑐
𝑧, then ‖𝑎‖𝑐 = 𝑡 ⟹ ‖𝑎‖𝑐 ≪ 𝑡 and 

  ‖𝑓(𝑎)‖𝑐 = ‖𝑓 (
𝑡

‖𝑧‖𝑐
𝑧)‖

𝑐
=

𝑡

‖𝑧‖𝑐
‖𝑓(𝑧)‖𝑐 ≪ 𝑐 

Thus,  ‖𝑓(𝑧)‖𝑐 ≪
𝑐

𝑡
‖𝑧‖𝑐 ≤ 𝑀‖𝑧‖𝑐 ∀ 𝑧 ∈ 𝑋. 

Definition 5. Non-Linear Scalarization function 

Let 𝑌 be a topological vector space, 𝑃 be a cone and a fixed 𝑒 ∈ 𝑖𝑛𝑡 𝑃. A function                    

𝜉𝑒: 𝑌 ⟶ ℝ defined by, 

  𝜉𝑒(𝑏) = 𝑖𝑛𝑓{𝑟 ∈ ℝ: 𝑏 ∈ 𝑟𝑒 − 𝑃}, ∀ 𝑏 ∈ 𝑌. 

is called non-linear scalarization function. 

Lemma 3. 

Let(𝑋, ‖∙‖𝑐) be a cone normed space. Then ‖∙‖: 𝑋 ⟶ [0, ∞) defined by ‖∙‖: 𝜉𝑒 ∘ ‖∙‖𝑐 is a 

norm. 

 

 

Proof: 

 We know that,  

  ‖𝑎‖𝑐 = 0 ⟺ 𝑎 = 0 ∀𝑎 ∈ 𝑋 

Since 𝜉𝑒(∙) is positively homogeneous. 

 And, by equation (3) 

  ‖𝛼𝑎‖𝑐 = 𝜉𝑒(‖𝛼𝑎‖𝑐) = 𝜉𝑒(|𝛼|‖𝑎‖𝑐) = |𝛼|𝜉𝑒(‖𝑎‖𝑐) = |𝛼|‖𝑎‖𝑐 

Applying (4), we have, 

  𝜉𝑒(‖𝑎 + 𝑏‖𝑐) ≤ 𝜉𝑒(‖𝑎‖𝑐 + ‖𝑏‖𝑐) ≤ 𝜉𝑒(‖𝑎‖𝑐) + 𝜉𝑒(‖𝑏‖𝑐)   

for all 𝑎, 𝑏 ∈ 𝑋 

That is, ‖∙‖𝑐 satisfies the triangle inequality. 

 Hence, ‖∙‖𝑐 is a norm. 

Proposition 2. 

 Let the two cone normed spaces be 𝑋𝑐 and 𝑌𝑐, and 𝑓 is a linear mapping from 𝑋𝑐 to 𝑌𝑐. If 𝑓 is 

continuous from 𝑋𝑐 to 𝑌𝑐, then it is continuous from normed spaces (𝑋, ‖∙‖) to (𝑌, ‖∙‖). 

Proof: 

 Assume that 𝑓 is continuous from 𝑋𝑐 to 𝑌𝑐, by lemma (2), it is cone bounded. 

Thus,   

  ‖𝑓(𝑎)‖𝑐 ≤ 𝑀‖𝑎‖𝑐 

for all 𝑎 ∈ 𝑋𝑐 and 0 ≪ 𝑀 ∈ 𝐹.  

Now, 

  ‖𝑓(𝑎)‖ = 𝜉𝑒 ∘ ‖𝑓(𝑎)‖𝑐,  by lemma (3)    
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  ‖𝑓(𝑎)‖ ≤ 𝜉𝑒 ∘ (𝑀‖𝑎‖𝑐) 

  ‖𝑓(𝑎)‖ = 𝑀(𝜉𝑒 ∘ ‖𝑎‖𝑐) 

  ‖𝑓(𝑎)‖ = 𝑀‖𝑎‖ 

Since continuity and boundedness of a linear map are equivalent in a classical normed space, 

and 𝑓 is bounded, hence 𝑓 is continuous. 

Theorem 1. 

 Let the two cone normed spaces be 𝑋𝑐 and 𝑌𝑐. For each 𝑓 ∈ ℒ(𝑋𝑐, 𝑌𝑐), set 

  ‖𝑓‖𝑐 = 𝑠𝑢𝑝{‖𝑓(𝑎)‖𝑐: ‖𝑎‖𝑐 ≪ 1} 

Then the following conditions holds 

1. ‖𝑓‖𝑐 is a cone norm on ℒ(𝑋𝑐, 𝑌𝑐). 

2. If (𝑌, ‖∙‖𝑐) is a cone Banach space. Then ℒ(𝑋𝑐, 𝑌𝑐) is a cone Banach space.  

Proof: 

1. Clearly ‖0‖𝑐 = 0. Now if ‖𝑓‖𝑐 = 0 

‖𝑓‖𝑐 = 𝑠𝑢𝑝{‖𝑓(𝑎)‖𝑐: ‖𝑎‖𝑐 ≪ 1} = 0. 

⟹ ‖𝑓(𝑎)‖𝑐 = 0 

⟹ 𝑓(𝑎) = 0 

⟹ 𝑓 = 0 

For the translation invariance, let 𝛼 ∈ ℝ then 

  ‖𝛼𝑓‖𝑐 = 𝑠𝑢𝑝{‖𝛼𝑓(𝑎)‖𝑐: ‖𝑎‖𝑐 ≪ 1}  

  ‖𝛼𝑓‖𝑐 = 𝑠𝑢𝑝{|𝛼|‖𝑓(𝑎)‖𝑐: ‖𝑎‖𝑐 ≪ 1} 

   = |𝛼|𝑠𝑢𝑝{‖𝑓(𝑎)‖𝑐: ‖𝑎‖𝑐 ≪ 1} 

   = |𝛼|‖𝑓‖𝑐 

For the triangle inequality, we have for any 𝑓, 𝑔 ∈ ℒ(𝑋𝑐, 𝑌𝑐) that  

          ‖𝑓 + 𝑔‖𝑐 = 𝑠𝑢𝑝{‖𝑓(𝑎) + 𝑔(𝑎)‖𝑐: ‖𝑎‖𝑐 ≪ 1} 

   ≤ 𝑠𝑢𝑝{‖𝑓(𝑎)‖𝑐 + ‖𝑔(𝑎)‖𝑐: ‖𝑎‖𝑐 ≪ 1} 

  = 𝑠𝑢𝑝{‖𝑓(𝑎)‖𝑐: ‖𝑎‖𝑐 ≪ 1} + 𝑠𝑢𝑝{‖𝑔(𝑎)‖𝑐: ‖𝑎‖𝑐 ≪ 1} 

   = ‖𝑓‖𝑐 + ‖𝑔‖𝑐 

Hence ‖𝑓‖𝑐 is a cone norm on ℒ(𝑋𝑐, 𝑌𝑐). 

2. From (i), ‖𝑓‖𝑐 is a cone norm on ℒ(𝑋𝑐, 𝑌𝑐). 

 To show that the space ℒ(𝑋𝑐, 𝑌𝑐) is complete if (𝑌, ‖∙‖𝑐) is complete. 

Let {𝑓𝑛} be a Cauchy sequence in ℒ(𝑋𝑐, 𝑌𝑐). 

Then, given 0 ≪ 𝑐 with 𝑐 ∈ 𝐹, there exist 𝑁 ∈ ℕ such that, 

  ‖𝑓𝑛 − 𝑓𝑛0
‖

𝑐
≪ 𝑐 ∀ 𝑛, 𝑛0 ≥ 𝑁 

Let 𝑎 ∈ 𝑋, then, 

‖𝑓𝑛(𝑎) − 𝑓𝑛0
(𝑎)‖

𝑐
= ‖(𝑓𝑛 − 𝑓𝑛0

)(𝑎)‖
𝑐

≤ ‖𝑓𝑛 − 𝑓𝑛0
‖

𝑐
‖𝑎‖𝑐 ≪ 𝑐‖𝑎‖𝑐 ∀ 𝑎 ∈ 𝑋              (5)

 Hence, {𝑓𝑛(𝑎)} is a Cauchy sequence in 𝑌. Since 𝑌 is complete, there exists 𝑏 ∈ 𝑌 such that,  

   𝑓𝑛(𝑎) ⟶ 𝑏 as 𝑛 ⟶ ∞ 

Setting 𝑓(𝑎) ⟶ 𝑏. We shows that 𝑓 ∈ ℒ(𝑋𝑐, 𝑌𝑐) and 𝑓𝑛 ⟶ 𝑓. Let 𝑎1, 𝑎2 ∈ 𝑋 and 𝛼, 𝛽 ∈ ℝ. Then, 

𝑓(𝛼𝑎1 + 𝛽𝑎2) = lim
𝑛⟶∞

𝑓𝑛 (𝛼𝑎1 + 𝛽𝑎2) 

𝑓(𝛼𝑎1 + 𝛽𝑎2)  = lim
𝑛⟶∞

(𝛼𝑓𝑛(𝑎1) + 𝛽𝑓𝑛(𝑎2)) 

                                      = 𝛼 lim
𝑛⟶∞

𝑓𝑛(𝑎1) + 𝛽 lim
𝑛⟶∞

𝑓𝑛(𝑎2) 

                                      = 𝛼𝑓(𝑎1) + 𝛽𝑓(𝑎2) 

Thus, 𝑓 is linear. Now taking the limit as 𝑛 ⟶ ∞ of equation (5) above, we get 

  ‖(𝑓𝑛 − 𝑓)(𝑎)‖𝑐 = ‖𝑓𝑛(𝑎) − 𝑓(𝑎)‖𝑐 ≪ 𝑐‖𝑎‖𝑐 ∀𝑛 ≥ 𝑁 & 𝑎 ∈ 𝑋 

 Thus, 𝑓𝑛 − 𝑓 is a cone bounded mapping for all 𝑛 ≥ 𝑁. Hence 𝑓𝑛 − 𝑓 ∈ ℒ(𝑋𝑐, 𝑌𝑐) by lemma 2, 

which implies that 𝑓 = 𝑓𝑛 − (𝑓𝑛 − 𝑓) ∈ ℒ(𝑋𝑐, 𝑌𝑐). 

Hence, 
‖𝑓𝑛 − 𝑓‖𝑐 = 𝑠𝑢𝑝{‖𝑓𝑛(𝑎) − 𝑓(𝑎)‖𝑐: ‖𝑎‖𝑐 ≪ 1} ≪ 𝑠𝑢𝑝{‖𝑎‖𝑐𝑐: ‖𝑎‖𝑐 ≪ 1} ≪ 𝑐 ∀𝑛 ≥ 𝑁 

which implies that, 𝑓𝑛 ⟶ 𝑓 as 𝑛 ⟶ ∞. 
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3. DUAL SPACE OF A CONE NORMED SPACE 

 If 𝑌𝑐 = ℝ𝑐, where ℝ𝑐 = (ℝ, ‖∙‖𝑐), then ℒ(𝑋𝑐, 𝑌𝑐) = ℒ(𝑋𝑐, ℝ𝑐). We observe that     ‖∙‖𝑐 = |∙| 
if ‖∙‖𝑐 is defined on the space of real numbers ℝ. Hence, we define the dual space 𝑋𝑐

∗ of a cone normed 

space 𝑋𝑐 such that 

  𝑋𝑐
∗ = {𝑓: (𝑋, ‖∙‖𝑐) ⟶ (ℝ, |∙|), 𝑤ℎ𝑒𝑟𝑒 𝑓 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠} 

 Since ℝ is complete with respect to ‖∙‖𝑐 = |∙|, 𝑋𝑐
∗ is a cone Banach space. Thus, 𝑋𝑐

∗ is a dual 

of a cone normed space (𝑋, ‖∙‖𝑐). 

Definition 6. 

 Let 𝑋 be a linear space. A mapping 𝜌: 𝑋 ⟶ ℝ is said to be sublinear functional if the following 

conditions are satisfied: 

a. 𝜌(𝑎 + 𝑏) ≤ 𝜌(𝑎) + 𝜌(𝑏) ∀𝑎, 𝑏 ∈ 𝑋 (Triangle inequality) 

b. 𝜌(𝜇𝑎) = 𝜇𝜌(𝑎), 𝜇 ≥ 0  (Positive homogeneous) 

Definition 7-Semi-cone norm 

 A semi-cone norm 𝜌𝑐 on a linear space. 𝑋 is a mapping 𝜌𝑐: 𝑋 ⟶ 𝐹 such that, 

1. 𝜌𝑐(𝑎) ≥ 0 and 𝜌𝑐(0) = 0 

2. 𝜌𝑐(𝜇𝑎) = |𝜇|𝜌𝑐(𝑎) 

3. 𝜌𝑐(𝑎 + 𝑏) ≤ 𝜌𝑐(𝑎) + 𝜌𝑐(𝑏) 

A semi-cone norm 𝜌𝑐 is a sublinear functional only if 𝐹 = ℝ. 

 

Example 1. 

1. Every cone norm is a semi-cone norm but the converse is not the case. 

2. Let 𝐹 = ℝ 2 and 𝑃 be a positive cone define by 𝑃 = {𝑎1, 𝑎2|𝑎1 ≥ 0, 𝑎2 ≥ 0} with a coordinatewise 

ordering and 𝑋 = ℝ2. A mapping 𝜌𝑐: 𝑋 ⟶ 𝐹 defined by                    𝜌𝑐(𝑎1, 𝑎2) =

(
|𝑎1−𝑎2|

2
, |𝑎1 − 𝑎2|) is a semi-cone norm on 𝑋 which is nor a cone norm. 

Proof: 

1. This is obvious. 

2. Let (𝑎1 − 𝑎2) = (0,0), then 𝜌𝑐(0,0) = (0,0). For any 𝛼 ∈ ℝ we have  

𝜌𝑐(𝛼(𝑎1, 𝑎2)) = 𝜌𝑐(𝛼𝑎1, 𝛼𝑎2) 

= (
|𝛼𝑎1 − 𝛼𝑎2|

2
, |𝛼𝑎1 − 𝛼𝑎2|) 

=
|𝛼||𝑎1 − 𝑎2|

2
, |𝛼||𝑎1 − 𝑎2| 

    = |𝛼|𝜌𝑐(𝑎1, 𝑎2) 

For the triangle inequality, 

 Let (𝑎1, 𝑎2), (𝑏1, 𝑏2) ∈ 𝑋, then 

  𝜌𝑐(𝑎1, 𝑎2) + (𝑏1, 𝑏2) = 𝜌𝑐((𝑎1 + 𝑏1), (𝑎2 + 𝑏2)) 

    = (
|(𝑎1+𝑏1)−(𝑎2+𝑏2)|

2
, |(𝑎1 + 𝑏1) − (𝑎2 + 𝑏2)|) 

    = (
|(𝑎1−𝑎2)+(𝑏1−𝑏2)|

2
, |(𝑎1 − 𝑎2) + (𝑏1 − 𝑏2)|) 

    = (
|(𝑎1−𝑎2)|

2
, |(𝑎1 − 𝑎2)|) + (

|(𝑏1−𝑏2)|

2
, |(𝑏1 − 𝑏2)|)  

  𝜌𝑐(𝑎1, 𝑎2) + (𝑏1, 𝑏2) = 𝜌𝑐(𝑎1, 𝑎2) + 𝜌𝑐(𝑏1, 𝑏2) 

Hence, 𝜌𝑐 is a semi-cone norm. We see that 𝜌𝑐 is not a cone norm.  

If 𝜌𝑐(𝑎1, 𝑎2) = (0,0) then 

  (
|(𝑎1−𝑎2)|

2
, |(𝑎1 − 𝑎2)|) = (0,0) 

  
|(𝑎1−𝑎2)|

2
= 0 &|(𝑎1 − 𝑎2)| = 0 

which implies that  
|𝑎1 − 𝑎2| = 0 ⟹ 𝑎1 − 𝑎2 = 0 ⟹ 𝑎1 = 𝑎2. 
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Lemma 4. 

 Let𝑓 ∈ 𝑋𝑐
∗ and 𝑎 ∈ 𝑋𝑐 be defined such that 𝜌(𝑎) = ‖𝑓‖𝑐‖𝑎‖𝑐. Then 𝜌 is a sublinear functional. 

Proof: 

 First to prove that 𝜌 is a well defined functional. Since, 

𝜌(𝑎) = ‖𝑓‖𝑐‖𝑎‖𝑐 = 𝑠𝑢𝑝
𝑎∈𝑋

|𝑓(𝑎)|

‖𝑎‖𝑐

‖𝑎‖𝑐 = 𝑠𝑢𝑝
𝑎∈𝑋

|𝑓(𝑎)| 

 Hence, 𝜌 is a real valued functional. 

For triangle inequality, let 𝑎, 𝑏 ∈ 𝑋 then 

  𝜌(𝑎 + 𝑏) = ‖𝑓‖𝑐‖𝑎 + 𝑏‖𝑐 

   ≤ ‖𝑓‖𝑐(‖𝑎‖𝑐 + ‖𝑏‖𝑐) 

  = ‖𝑓‖𝑐‖𝑎‖𝑐 + ‖𝑓‖𝑐‖𝑏‖𝑐 

  = 𝜌(𝑎) + 𝜌(𝑏) 

For any 𝜇 ≥ 0, we have 

  𝜌(𝜇𝑎) = ‖𝑓‖𝑐‖𝜇𝑎‖𝑐 

  = |𝜇|‖𝑓‖𝑐‖𝑎‖𝑐 

  = |𝜇|𝜌(𝑎) 

  = 𝜇𝜌(𝑎) 

Since 𝜇 ≥ 0. 

 

Conclusion: 

 This paper have clearly shown that the concept of duality in cone normed space is achievable 

and proved some of its properties. 
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